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On the extension of quantum similarity to atomic nuclei:
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Institute of Computational Chemistry, University of Girona, 17071 Girona, Catalonia, Spain

Received 12 June 1997

Quantum similarity is a useful tool to establish comparisons between elements of a
quantum object set and, so far applied successfully to molecular physics, is applied here to
atomic nuclei. Quantum Similarity Measures (QSM) and Indices (QSI) are introduced to
study an arbitrary set of 20 nuclei. From this study, relationships between nuclear overlap-
like self-similarities and size-like properties are found. A bidimensional projection of the
set is performed, and Mendeleev conjecture is invoked to predict qualitatively some nuclear
ground-state properties, such as total binding energy per nucleon, nuclear radius, nuclear
volume, total and partial energies, etc.

1. Introduction

Quantum Similarity (QS) is a recently developed subject [5,7,9–11,13]. It con-
stitutes a fundamental tool to order and classify molecular systems using their density
functions. However, the QS foundations are so general that it makes possible to ap-
ply it to other areas, provided that the studied systems have a quantum mechanical
description. In this work, quantum similarity is applied to an arbitrary set of twenty
atomic nuclei.

As a consequence of the quantum mechanical postulates, all the information
which can be extracted from a quantum system is contained in its wavefunction, and
in some degree, in its density function. Density function formalism may be based
in the context by Löwdin and McWeeny [25–28], which states that all ground-state
properties of a quantum system, and in particular the energy, can be expressed in
relation to its density function.

A n-particle system (in our case, n nucleons) will be caracterized by a nth-order
density function, containing all its information. Because of the evident difficulties
in modelling and manipulating these functions, we will restrict our calculations to
first-order density functions, assuming the derived loss of information. Thus, if two
first-order density functions for two systems A and B are known, ρA(r1) and ρB(r2),
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a Quantum Similarity Measure (QSM) can be defined as the integral

ZAB =

∫
D1

∫
D2

ρA(r1)Ω(r1, r2)ρB(r2) d3r1 d3r2, (1)

where Ω(r1, r2) is a definite positive operator. A Dirac delta distribution, δ(r1 − r2),
has been chosen arbitrarily here to be this operator. This transforms equation (1) into

ZAB =

∫
D
ρA(r)ρB(r) d3r. (2)

QSM derived by this way are called overlap-like similarity measures. In the case that
density functions only have a radial dependence, this yields

ZAB =

∫
D
ρA(r)ρB(r)4πr2 dr. (3)

The integrals can be used to extract information from the set of studied quantum
objects.

The results from QSM calculations can be expressed in a matrix form, where
the element ZAB corresponds to comparing nucleus A with nucleus B. Obviously, the
QSM matrix is symmetric. Diagonal elements of this matrix are known, by obvious
reasons, as Self-Similarity Measures (SSM).

There are various possible manipulations of QSM, called Quantum Similarity
Indices (QSI). Among all the existing QSI, a classical one has been chosen here, the
so-called Carbó Index. Using the matrix elements of the QSM, the Carbó Index is
defined as

CAB =
ZAB√
ZAAZBB

. (4)

This index is nothing but a normalization of the similarity measures, and it can be
interpreted as a generalized cosine of the angle between Hilbert space functions ρA

and ρB. The Carbó Index ranges from 0 (total dissimilarity) to 1 (complete similarity),
depending on the similarity measure associated to the two nuclei.

2. Nuclear density functions

Nuclear density functions have been calculated using a Hartree–Fock iterative
procedure with the effective Skyrme interaction [34,40] with a SkM* parametriza-
tion [2]. More details on this model are given in appendix A.

In our study, we have chosen arbitrarily 20 nuclei along all the Periodic Table
in which the Skyrme–Hartree–Fock model agrees. We have chosen a very variate set:
magic, semimagic and nonmagic nuclei, stable and unstable nuclei, nuclei with integer
and fractionary spin, nuclei with positive and negative parity, etc.

The set of studied nuclei is the following: 12C, 14N, 16O, 28Si, 35Cl, 40Ca, 48Ca,
56Fe, 56Ni, 58Ni, 63Cu, 73As, 89Y, 93Mo, 120Sn, 124Sn, 133Cs, 153Gd, 184W, 208Pb.
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Figure 1. Skyrme–Hartree–Fock nuclear density functions (in fm−3) for the twenty studied nuclei.

Numerical nuclear density functions obtained with the procedure exposed in ap-
pendix A are plotted in figure 1.

The shape of the nuclear density functions makes possible to approximate them
analytically as Fermi–Dirac distributions [29,32], or as linear combinations of gaussian
functions [15] or spherical Bessel functions [16], among others. In order to keep
accuracy as best as possible, the numerical form will be adopted, and thus QSM
integrals will be calculated numerically.

3. Results and discussion

3.1. The nuclear overlap-like self-similarity measures

QSM have been calculated numerically from definition (3), using a second-order
Simpson rule [6]. QSM matrix elements are shown in table 1, and table 2 gathers the
nuclear overlap-like self-similarity measures (the diagonal matrix elements ZAA) for
the series of 20 nuclei.

The values of table 2 show that nuclear SSM decrease from 208Pb to 12C. Plotting
nuclear SSM versus massic number (see figure 2) one can see that self-similarities
exhibit a clear linear dependence on the massic number. This relationship is more
precise and simpler than the one derived for atoms, where atomic SSM were found
depending on Z3, Z being the atomic number [36].
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Table 1
Quantum similarity measures matrix.

Z 12C 14N 16O 28Si 35Cl 40Ca 48Ca 56Fe 56Ni 58Ni 63Cu 73As 89Y 93Mo 120Sn 124Sn 133Cs 153Gd 184W 208Pb
12C 1.0899
14N 1.1457 1.2193
16O 1.2044 1.2953 1.3881
28Si 1.6189 1.7888 1.9601 2.9426
35Cl 1.7189 1.9094 2.1019 3.2268 3.6100
40Ca 1.7028 1.9138 2.1263 3.3551 3.8067 4.0662
48Ca 1.7880 2.0306 2.2747 3.6761 4.2249 4.5640 5.1737
56Fe 1.8771 2.1411 2.4067 3.9393 4.5742 4.9790 5.6844 6.2843
56Ni 1.8357 2.1051 2.3757 3.9251 4.5687 4.9873 5.7059 6.3125 6.3469
58Ni 1.8883 2.1584 2.4300 3.9965 4.6540 5.0775 5.8087 6.4319 6.4630 6.5858
63Cu 1.9733 2.2472 2.5229 4.1264 4.8105 5.2484 6.0095 6.6699 6.6959 6.8324 7.1095
73As 1.9532 2.2315 2.5119 4.1606 4.9179 5.4157 6.2580 7.0086 7.0369 7.1946 7.5246 8.0778
89Y 1.8952 2.1907 2.4880 4.2394 5.1125 5.7140 6.6929 7.5843 7.6229 7.8085 8.2128 8.9720 10.1862

93Mo 1.9160 2.2162 2.5181 4.2950 5.1850 5.8006 6.8017 7.7176 7.7558 7.9481 8.3702 9.1671 10.4402 10.7082
120Sn 1.9196 2.2271 2.5359 4.3670 5.3362 6.0165 7.1132 8.1471 8.1793 8.4078 8.9293 9.9534 11.5807 11.9345 13.7562
124Sn 1.8959 2.2034 2.5121 4.3449 5.3280 6.0216 7.1351 8.1892 8.2216 8.4553 8.9917 10.0556 11.7447 12.1118 14.0264 14.3119
133Cs 1.9513 2.2663 2.5824 4.4556 5.4573 6.1637 7.3019 8.3843 8.4138 8.6572 9.2204 10.3329 12.1016 12.4928 14.5770 14.8868 15.5191
153Gd 1.9216 2.2402 2.5594 4.4485 5.4777 6.2110 7.3864 8.5156 8.5426 8.8008 9.4098 10.6288 12.5719 13.0105 15.4626 15.8287 16.5794 17.9135
184W 1.6991 1.9925 2.2861 4.0387 5.0556 5.7905 6.9548 8.1022 8.1200 8.3925 9.0554 10.4190 12.5911 13.0945 16.1264 16.5834 17.5174 19.3157 21.5845
208Pb 1.8500 2.1566 2.4638 4.3069 5.3672 6.1246 7.3340 8.5272 8.5405 8.8276 9.5239 10.9365 13.1860 13.7150 16.9473 17.4319 18.4487 20.4386 23.0338 24.7472

Table 2
Nuclear overlap-like self-similarity measures for the set of 20 nuclei.

Nucleus ZAA Nucleus ZAA Nucleus ZAA Nucleus ZAA
12C 1.0899 40Ca 4.0662 63Cu 7.1095 124Sn 14.3119
14N 1.2193 48Ca 5.1737 73As 8.0778 133Cs 15.5191
16O 1.3881 56Fe 6.2843 89Y 10.1862 153Gd 17.9135
28Si 2.9426 56Ni 6.3469 93Mo 10.7082 184W 21.5845
35Cl 3.6100 58Ni 6.5858 120Sn 13.7562 208Pb 24.7472
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Figure 2. Nuclear overlap-like self-similarities versus massic number. Solid line is a linear regression.

Nuclear SSM are related to the number of nucleons through the equation

ZAA = −0.527 + 0.120A. (5)

The negative value of nuclear SSM at the origin can be assigned to the incapability of
the Skyrme interaction to give good results for very light nuclei. Forcing the line to
go through the origin yields

ZAA = 0.116A. (6)

In both cases, the slope of the line is approximately 0.12 fm−3.
From a quantum mechanical point of view, a self-similarity measure is the expec-

tation value of the density operator [13], so it is not surprising that it gives a measure
of spatial occupation of matter. In this case, it seems as if nucleons were spread in
a constant way as the massic number increases. When a nucleon is added to a given
nuclear structure, the self-similarity associated to the system increases approximately
by a constant value, denoted by ∆Z . Thereby, from equations (5) and (6) one can see
that the obtained slope is ∆Z ≈ 0.12 fm−3. This value corresponds approximately to
the following analytical expression:

∆Z =
4
3
π〈ρ0〉2, (7)

where 〈ρ0〉 is the mean value of the nuclear density in the roughly constant range (see
figure 1). This expression, however, does not differentiate the isobar nuclei, where
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Table 3
Skyrme–HF nuclear radii (in fm) for the studied set.

Nucleus Radius Nucleus Radius Nucleus Radius Nucleus Radius
(fm) (fm) (fm) (fm)

12C 2.42 40Ca 3.40 63Cu 3.81 124Sn 4.73
14N 2.58 48Ca 3.53 73As 4.02 133Cs 4.81
16O 2.62 56Fe 3.67 89Y 4.24 153Gd 5.04
28Si 3.00 56Ni 3.66 93Mo 4.30 184W 5.38
35Cl 3.25 58Ni 3.70 120Sn 4.69 208Pb 5.56

the Coulomb term is overriding. So, ∆Z will be equal for the studied nuclei 56Fe and
56Ni, whereas the obtained self-similarities are slightly different (6.28 versus 6.35). An
analytical approach of the nuclear density function has been used to calculate the SSM
integral and put into evidence some trends capable of explaining the linear relationship
found. Calculations are given in appendix B.

Remembering that the massic number is the sum of the proton and neutron
contributions (A = Z + N ), the linearity between nuclear SSM and the number of
nucleons is straightforwardly translated to the massic number components.

The existing relationship between the nuclear radius and massic number is well
known [23]. Approximately, the nuclear radius follows the expression R = R0A

1/3

with R0 = 1.23 fm. The spherical approach of the density functions suggests a
definition of a nuclear volume in the usual way, namely,

V =
4
3
πR3 ≈ 4

3
π
(
R0A

1/3)3
=

4
3
πR3

0A ∝ A. (8)

Linear dependence of volume with massic number implies that the linear rela-
tionship between nuclear SSM and massic number can be translated to nuclear volume.
So, nuclear SSM give an estimation of the size of nucleus. This can be seen in figure 3,
where Skyrme–HF values for nuclear radii have been used (given in table 3).

The relationship between nuclear volume and nuclear self-similarities can be
written as

Vnuc = 36.361 + 27.778ZAA. (9)

3.2. Visualization and interpretation of similarity data: Projection of the nuclear
cloud

From this quantum similarity analysis some trends can be put into evidence in
order to classify the studied nuclear set. The method used [5,7,9–11,13] is based on
the consideration that, for any set of N nuclei, every one of them can be represented
by a N -dimensional vector: a column vector of the similarity matrix. The vector
components are the similarities of a given nucleus with the N nuclei of the set. This
means that every nucleus can be represented as a point in a N -dimensional space,
a point-nucleus. The closer two point-nuclei are, the more similar will be the nuclei
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Figure 3. Nuclear overlap-like self-similarities versus nuclear volume. Radii used to calculate nuclear
volumes are obtained Skyrme–HF values, not experimental ones. Solid line is the best fit.

they represent. A set of point-nuclei will be called a nuclear cloud. Nomenclature has
been adapted straightforwardly from the one used in quantum chemistry.

There are many ways to extract information from the QSM and QSI [3,19,22,
35,38]. Among all of them, we have chosen the possibility consisting in making a
projection of the nuclear cloud from the original N -dimensional space to any subspace
having dimension M < N . Then, the Mendeleev conjecture can be applied [4,8], which
states that by performing different projections an ordering of the different nuclei can
be achieved for any property. Thereby, if a projection is found such that it can classify
a set of nuclei into groups in relation to a determined known property, one can expect
that nuclei with unknown property values will be spatially located in such a way that
they will be associated to any of the groups of known nuclei. In that way, a prediction
of the property for these unknown nuclei could be done, if not quantitatively, at least
qualitatively.

Projection of the nuclear cloud is made as follows. According to a well-known
variational principle [37], the eigenvectors of a definite positive matrix Z are the
optimal space directions where the projections of the objects can be made with a
minimal loss of information from the original set. These eigenvectors are also known
as the principal components of the matrix. The Z matrix canonical decomposition is

ẑ =
N∑
i=1

λix̂
T
i x̂i, (10)
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where λi are the eigenvalues (and an order is imposed: λ1 > λ2 > · · · > λN ) of the
matrix Z, and x̂i its eigenvectors. Correlation matrices (and QSM, QSI are that) have
the property that they possess a few number of high eigenvalues and a high number
of low eigenvalues. This enables to truncate the summation in the first few terms,
maintaining a good approximation of the matrix elements. Thus

ẑ =
N∑
i=1

λix̂
T
i x̂i ≈

M∑
i=1

λix̂
T
i x̂i (11)

with M < N . If we choose only two terms, we will be able to perform a bidimensional
projection of the nuclear cloud, and making visualizable the set. Once the representa-
tion is made, a posteriori interpretation of the axes and their association with nuclear
properties can be stated.

In the plot, spatial components of each object will be the corresponding compo-
nents of its eigenvector. So, if the two main principal components of the representation
are expressed using columns (â1, â2) then the kth point-nucleus will have components
(ak1, ak2) in the plane defined by the axes 1 and 2. This study is known as Principal
Component Analysis (PCA). A percentage coefficient of explained variation between
the objects of the set can be defined as

% of explained variation = 100
∑
i

λi
Tr(Z)

, (12)

where Tr(Z) is the trace of the matrix Z. This coefficient will provide us with an
estimation of the loss of information occurred when the reduction of dimensions is
achieved.

3.3. Projection of the nuclear cloud generated by the Carbó matrix: Prediction of
nuclear ground-state properties

From the QSM matrix elements shown in table 1 and using Carbó Index defini-
tion (4), the Carbó matrix has been derived (see table 4). The Carbó matrix elements
are nothing but a normalization of similarity measures, performed in order to interpret
them more easily. From table 3, one can see that the factor that defines mainly the
similarity between two nuclides is, as one could expect, the number of nucleons. So,
the closer the massic numbers of two nuclei are, the more similar will be these nuclei.
This is an obvious result of the application of this method to a nuclear system (but
not so obvious if we were dealing with molecules), and of course, it is not the main
result it is expectable to obtain. Quantum similarity enables us to extract much more
information from the similarity matrix than a qualitative estimation of the resemblance
between nuclei.

With the instructions of the last section, we proceed to perform a projection of
the nuclear cloud generated by the Carbó Index matrix. Diagonalization has been
made with the Jacobi rotation method [14,21,41], and the eigenvalues of the matrix



D
.

R
obert,

R
.

C
arbó-D
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Table 4
Quantum similarity measures matrix.

C 12C 14N 16O 28Si 35Cl 40Ca 48Ca 56Fe 56Ni 58Ni 63Cu 73As 89Y 93Mo 120Sn 124Sn 133Cs 153Gd 184W 208Pb
12C 1.0000
14N 0.9939 1.0000
16O 0.9792 0.9956 1.0000
28Si 0.9040 0.9444 0.9698 1.0000
35Cl 0.8666 0.9101 0.9389 0.9901 1.0000
40Ca 0.8089 0.8595 0.8950 0.9700 0.9936 1.0000
48Ca 0.7530 0.8085 0.8488 0.9421 0.9776 0.9951 1.0000
56Fe 0.7172 0.7735 0.8149 0.9161 0.9604 0.9850 0.9969 1.0000
56Ni 0.6980 0.7567 0.8004 0.9082 0.9545 0.9817 0.9957 0.9995 1.0000
58Ni 0.7048 0.7617 0.8037 0.9078 0.9545 0.9812 0.9951 0.9998 0.9996 1.0000
63Cu 0.7089 0.7632 0.8031 0.9022 0.9496 0.9761 0.9909 0.9979 0.9968 0.9985 1.0000
73As 0.6583 0.7111 0.7501 0.8534 0.9107 0.9450 0.9680 0.9837 0.9828 0.9864 0.9929 1.0000
89Y 0.5688 0.6216 0.6617 0.7744 0.8431 0.8879 0.9219 0.9479 0.9481 0.9534 0.9651 0.9891 1.0000

93Mo 0.5608 0.6133 0.6531 0.7651 0.8340 0.8791 0.9138 0.9408 0.9408 0.9465 0.9593 0.9857 0.9996 1.0000
120Sn 0.4958 0.5438 0.5803 0.6864 0.7572 0.8045 0.8432 0.8763 0.8754 0.8833 0.9029 0.9442 0.9783 0.9833 1.0000
124Sn 0.4800 0.5274 0.5636 0.6695 0.7412 0.7894 0.8292 0.8635 0.8626 0.8709 0.8914 0.9352 0.9727 0.9784 0.9997 1.0000
133Cs 0.4745 0.5210 0.5564 0.6593 0.7291 0.7759 0.8149 0.8490 0.8478 0.8563 0.8778 0.9229 0.9625 0.9691 0.9977 0.9989 1.0000
153Gd 0.4349 0.4793 0.5133 0.6127 0.6812 0.7277 0.7673 0.8026 0.8012 0.8103 0.8338 0.8836 0.9307 0.9394 0.9850 0.9886 0.9944 1.0000
184W 0.3503 0.3884 0.4176 0.5068 0.5727 0.6181 0.6581 0.6957 0.6937 0.7039 0.7310 0.7891 0.8492 0.8613 0.9359 0.9435 0.9571 0.9823 1.0000
208Pb 0.3562 0.3926 0.4204 0.5047 0.5678 0.6105 0.6481 0.6838 0.6815 0.6915 0.7180 0.7735 0.8305 0.8425 0.9185 0.9263 0.9414 0.9707 0.9966 1.0000

Table 5
Eigenvalues of the Carbó Index matrix, ordered decreasingly.

λ1 = 16.7064 λ2 = 2.6060 λ3 = 0.5780 λ4 = 0.8962 × 10−1

λ5 = 0.1614 × 10−1 λ6 = 0.3436 × 10−2 λ7 = 0.3464 × 10−3 λ8 = 0.4621 × 10−4

λ9 = 0.17237 × 10−4 λ10 = 0.7587 × 10−5 λ11 = 0.2961 × 10−5 λ12 = 0.2452 × 10−5

λ13 = 0.1845 × 10−5 λ14 = 0.6534 × 10−6 λ15 = 0.3276 × 10−7 λ16 = −0.5334 × 10−7

λ17 = −0.7599 × 10−6 λ18 = −0.3586 × 10−5 λ19 = −0.5451 × 10−5 λ20 = −0.6056 × 10−5
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Figure 4. Three-dimensional representation of the nuclear cloud, projected onto the three first principal
components, denoted by F1, F2 and F3, respectively.

are shown in table 5. A definite positive matrix cannot have negative eigenvalues, and
all that appear are consequence of the approximative nature of the iterative procedure
of Jacobi transformation.

From equation (12) and taking into account that the trace of the Carbó ma-
trix is nothing but the cardinality of the system, we determine that the three first
eigenvalues contain the 99.5% of the explained variation among nuclei, hence the
reduction from the 20-dimensional original space to a 3-dimensional subspace is jus-
tified.

Figure 4 shows a 3-dimensional projection of the nuclear cloud. This plot can be
thought as a representation of a new type of Nuclear Periodic Table, where positions,
relative distances and angles among nuclei are determined by a magnitude related to
their internal structure (their density functions), instead of the usual flat classification
where the location of a nucleus is determined by its number of protons and neutrons.
Hence, from our point of view, construction of a Nuclear Periodic Table where the
location of a nucleus depends on a magnitude that contains all its information is a
subject of great taxonomic and physical interest. It is to be presumed that an extension
of the study to a larger set of nuclei would set the new nuclides following the clear trend
shown in figure 4 in relation to their massic number. Furthermore, other representations
of the nuclear cloud can be performed using elements of graph theory, and therefore
other types of periodic tables can be achieved.

The two first eigenvalues of the Carbó matrix contain the 96.6% of the explained
variation among nuclei, hence a bidimensional projection of the set should allow us
to extract relevant information of the system. A projection of figure 4 onto the first
two principal components (denoted by F1 and F2, respectively) is shown in figure 5.
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Figure 5. Bidimensional projection of the nuclear cloud onto the two first principal components (denoted
by F1, F2). The massic number and the chemical element name of each nucleus label the point-nuclei.

One can see that nuclei follow a “half-moon” distribution trend, ordered decreasingly.
Once the projection is performed, relationships between the principal components and
nuclear properties can be found.

It can be seen that the first principal component (F1) tends to group extreme
nuclei of the set. A basical ground-state nuclear property has tried to be related to
it: total binding energy per nucleon. Binding energy per nucleon is of a relatively
constant magnitude (except for very light nuclei), with a smooth peak near A = 56.
This value indicates where nuclei are most tightly bound, so binding energy per nucleon
is, somehow, a measure of the stability of a nuclear configuration. In order to state this
relationship, a representation of the same plot labelling each point-nucleus with the
corresponding value of this magnitude is shown in figure 6. Calculated Skyrme–HF
values of this property are given in table 6.

Correlation between both magnitudes can be put into evidence by plotting the
projection of the point-nuclei onto the first principal component versus the total binding
energy per nucleon. Figure 7 shows this. The first principal component and the total
binding energy per nucleon are related through the linear equation

F1 = −0.220 − 5.287 × 10−2 · (E/A). (13)
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Figure 6. Same plot as figure 5, but labelling each point-nucleus with its calculated value of the total
binding energy per nucleon.

Alternatively, the second principal component (F2) values increase with the size
of nucleus, thus this axis can be straightforwardly related to size-like properties, such
as the number of nucleons, nuclear mass, nuclear radius or nuclear volume. More-
over, there are some ground-state properties that increase with massic number, as
total energy or some partial energies (kinetic energy, volume and surface energies,
Coulomb energy, etc.). The calculated values of some of these properties are shown
in table 6.

Existing relationship between these properties and the number of nucleons make
possible to connect them to the second principal component. Some of these rela-
tionships are shown in figures 8–14, and can be expressed through the following
equations:

F2-massic number: F2 =−0.46 + 8.33 × 10−3 · A− 2.22 × 10−5 ·A2, (14)

F2-rms radius: F2 = 0.562 − 1.099r + 0.375r2 − 0.033r3, (15)

F2-volume energy: F2 =−0.439 − 2.623 × 10−4 · Evol

− 2.256 × 10−8 · (Evol)
2, (16)
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Table 6
Calculated Skyrme–Hartree–Fock values of energies and nuclear radii for the twenty nuclei.

Nucleus Kinetic Volume Surface Coulomb Total E/A
energy energy energy energy energy (MeV per
(MeV) (MeV) (MeV) (MeV) (MeV) nucleon)

12C 183.76 −312.83 51.17 8.14 −93.29 −7.77
14N 201.27 −359.51 50.56 10.65 −108.00 −7.71
16O 220.89 −414.43 53.38 13.56 −127.75 −7.98
28Si 484.96 −806.98 92.56 39.08 −236.52 −8.45
35Cl 575.79 −994.19 92.04 54.41 −297.86 −8.51
40Ca 633.13 −1142.73 97.98 72.06 −341.13 −8.53
48Ca 828.22 −1404.38 120.33 71.32 −419.45 −8.74
56Fe 1001.30 −1684.62 136.23 115.49 −490.65 −8.76
56Ni 1008.90 −1704.94 144.99 133.12 −485.46 −8.67
58Ni 1044.72 −1759.92 142.12 132.56 −507.32 −8.75
63Cu 1121.09 −1885.26 136.53 139.74 −550.45 −8.74
73As 1258.65 −2176.50 141.25 172.66 −630.31 −8.63
89Y 1558.98 −2722.41 175.60 229.87 −775.08 −8.71

93Mo 1667.49 −2857.38 178.96 262.82 −801.69 −8.62
120Sn 2137.33 −3653.84 194.87 347.37 −1011.75 −8.43
124Sn 2242.22 −3779.82 203.98 345.54 −1043.65 −8.42
133Cs 2431.12 −4083.92 209.45 410.04 −1107.65 −8.33
153Gd 2791.57 −4723.85 226.24 530.52 −1244.28 −8.13
184W 3426.41 −5710.95 284.65 667.51 −1439.51 −7.82
208Pb 3857.23 −6465.55 281.51 796.68 −1634.88 −7.86

F2-surface energy: F2 =−0.406 − 4.285 × 10−4 ·Esurf + 3.412 × 10−5 · (Esurf)
2

− 8.286 × 10−8 · (Esurf)
3, (17)

F2-kinetic energy: F2 =−0.434 + 4.412 × 10−4 ·Ekin

− 6.419 × 10−8 · (Ekin)2, (18)

F2-Coulomb energy: F2 =−0.368 + 3.130 × 10−3 ·ECoul − 5.122 × 10−6 · (ECoul)
2

+ 2.900 × 10−9 · (ECoul)
3, (19)

F2-total energy: F2 =−0.456 − 9.610 × 10−4 ·Etot

− 2.944 × 10−7 · (Etot)
2. (20)

These results enable us to predict some nuclear ground-state properties. The
set could be also projected onto other principal components (eigenvectors of lower
eigenvalues), and then try to relate the obtained results to other magnitudes.

Once the projection of a N -particle set is achieved, prediction of any associated
property for a new nucleus is easily made: one must calculate the density function of
the unknown nucleus, obtain QSM and QSI and project the new set ((N + 1)-particle
set) onto the appropriate axes. The nucleus with the unknown property will be set in
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Figure 7. Projection of the nuclear cloud onto the F1-axis versus total binding energy per nucleon. Solid
line is a linear fit.

Figure 8. Projection of the nuclear cloud onto F2-axis versus the number of nucleons. Solid line shows
a second-degree polynomial fit.
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Figure 9. Projection onto the F2-axis versus Skyrme–Hartree–Fock root mean square radius plot. A third-
degree polynomial fit is plotted.

Figure 10. Projection of the nuclear cloud onto the F2-axis versus volume energy. Skyrme–HF values
are used. A second-degree polynomial fit is plotted.
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Figure 11. Projection onto the F2-axis versus Skyrme–HF surface energy. A third-degree polynomial fit
is plotted.

Figure 12. Projection of the nuclear cloud onto the F2-axis versus kinetic energy plot. Solid line shows
a second-degree polynomial fit.
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Figure 13. Projection of the nuclear cloud onto the F2-axis versus Skyrme–HF calculated Coulomb
energy. A third-degree polynomial fit has been plotted.

Figure 14. Projection onto the F2-axis versus Skyrme–HF total energy. Solid line shows a second-degree
polynomial fit.
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a region of that distribution, and that region will be related to an approximated value
of the requested property.

In principle, these results do not justify the usefulness of the application of quan-
tum similarity to nuclear systems, since all the properties predicted can be estimated
either using existing relationships between them and the massic number or using simple
manipulations of the wavefunctions or the density functions. However, remembering
the role that quantum mechanical postulates confer on density functions (the contents
of all the information of the system), quantum similarity can proportionate us an es-
timation of the values of certain magnitudes that cannot be obtained by manipulating
mathematically the nuclear wavefunctions. We are referring, for instance, to properties
related to nuclear stability: qualitative prediction of mean lifetime or mode decay of
a radiactive nuclide could be estimated with this technique. In any case, these results
state the fact that quantum similarity is able to extract relevant information from the
nuclear density functions.

4. Conclusions

This work constitutes, using atomic nuclei, the first attempt to extend quantum
similarity to other areas dealing with quantum objects different from molecules.

In order to establish a formal comparison between the different elements of a
nuclear system, nuclear quantum similarity measures and indices have been defined
analogously to molecular ones. A study of the similarity data obtained with these
magnitudes has allowed us to come to the following conclusions: first, nuclear quantum
self-similarities give a measure of the comparison between identical nuclei. We have
seen that this magnitude gives an estimation of size of nuclei, and of how nucleons are
spread in space. A linear relationship between them and size-like properties (massic
number and nuclear volume) is found.

Projection of the nuclear cloud from the original 20-dimensional space to a
2-dimensional subspace has been performed in order to extract information from the
similarity data. A PCA has been performed taking as axes of the representations the
two first principal components of the Carbó matrix. This study associates the axes
with nuclear ground-state properties such as total binding energy per nucleon, total or
partial energies, and root mean square radius. In the same manner, lower principal
components could be taken as axes of new representations. After that, relationships
between these new axes and other nuclear properties could be searched.

Zermelo’s theorem [17] and the Mendeleev conjecture are some of the theoret-
ical bases of this study. These principles, together with the different techniques of
visualization, also provide a way to construct a new type of Nuclear Periodic Table:
a bidimensional or three-dimensional periodic table where positions, relative distances
and angles between nuclei are related to the foundations of their quantum structure –
their respective density functions.

However, there are several degrees of freedom in the present study. A Dirac delta
function has been chosen here to be the operator of the QSM integrals, but obviously it
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is not the only possible choice. Other operators frequently used in molecular physics
are a Coulomb operator (Ω(r1, r2) = 1/r12) [5,7,9–11,13], a gravitational operator
(Ω(r1, r2) = 1/r2

12) [4], or another density function (thus, using the so-called triple-
density similarity measures) [12]. Further, other similarity indices can be used, as
the Distance Dissimilarity Index [7], the Hodgkin–Richards [20] or Tanimoto [38]
Indices, or the Petke Index [31]. Last, other visualization techniques can be used in
order to interpret the similarity data [3,19,22,35,38]. All these circumstances make
our paper a preliminary work in this field, susceptible to be extended and improved in
a considerable way.

Finally, this work tries to constitute a first step towards a new point of view
in the study of nuclear systems. Further, foundations of quantum similarity make it
extensible to other systems, provided they are described in a quantum mechanical way,
namely, by a wavefunction, and in extension, by a density function. In this manner,
this paper settles the bases for the application of quantum similarity to systems of
physical interest such as infinite nuclear matter (quantum similarity in momentum-
space has already been discussed [1]), nuclear molecules or atomic systems, among
others.

Appendix A. The Skyrme–Hartree–Fock model for the nuclear ground state

So far the exact nature of the relationship between the observed single-particle
properties of nuclei and the nucleon–nucleon force has not been resolved. There does
not exist, therefore, a realistic method that can describe at the same time the average
nucleonic properties (binding energy, nuclear radii, density distributions, etc.) and
the excited states in each nucleus. To solve this problem another type of calcula-
tions, namely Hartree–Fock calculations with effective interactions, are used. The
approach consisting of a direct parametrization of the effective force is obviously less
fundamental than using a realistic interaction, but nevertheless has a certain number
of advantages, among them a greater precision of the predicted results. Among all
the effective interactions proposed, the one presented by T.H.R. Skyrme 38 years ago
[34,40] still today continues to be the best tool to describe the ground-state of spherical
nuclei. This is the interaction that we have used to obtain the nuclear density functions
necessary to the quantum similarity analysis.

Skyrme force is an effective density-dependent interaction with a short-range
two-body term and a three-body term:

VSkyrme =
∑
i<j

V (2)
ij +

∑
i<j<k

V (3)
ijk . (21)

Explicitly, it can be written as

VSkyrme = t0(1 + x0Px)δ(ri − rj) +
1
2
t1(1 + x1Px)

{
p 2

12δ(ri − rj) + δ(ri − rj)p 2
12

}
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+ t2(1 + x2Px)p12 · δ(ri − rj)p12 +
1
6
t3(1 + x3Px)ρα

(
ri + rj

2

)
δ(ri − rj)

+ it4p12 · δ(ri − rj)(σi + σj) · p12, (22)

where p12 = p1 − p2 is the relative momentum, Px is the exchange spin oper-
ator and σ are the Pauli matrices. The potential depends on a few parameters:
t0, t1, t2, t3, t4, x0, x1, x2, x3, α. These parameters are related to magnitudes
as nuclear matter incompressibility or Fermi momentum, and they are fitted to nu-
clear single-particle properties (binding energies per nucleon, nuclear radii, etc.) [18].
Among the several existing parametrizations, we have used the SkM* [2], given in
table 7.

The simplicity of the ansatz makes possible to express the energy functional H(r)
as a function of a few densities: density of nucleons, ρ(r), kinetic energy, τ (r), spin
density, J(r), and the divergence of the spin density, ∇ · J(r), defined as

ρq(r) =
∑
β∈q

wβϕ
+
β (r)ϕβ (r),

jq(r) =
i
2

∑
β∈q

wβ
[
∇ϕ+

β (r)ϕβ(r)− ϕ+
β∇ϕβ(r)

]
,

(23)
τq(r) =

∑
β∈q

wβ∇ϕ+
β (r)∇ϕβ(r),

∇Jq(r) =−i
∑
β∈q

wβ∇ϕ+
β (r)∇× σϕβ(r),

where ϕβ is the single-particle wavefunction of the state β and q is the isospin label
(protons/neutrons). For doubly closed shell nuclei, spherical symmetry reduces densi-
ties position dependence (3 variables) into a radial coordinate dependence (1 variable).

Nonmagic nuclei have been dealt with HF+BCS equations, introducing a weight
wβ in the density definitions, interpreted as the ocupation probability of the state β.
This factor is obtained through a simple pairing scheme [39].

Radial densities can be written as

ρq(r) =
∑
nβjβlβ

wβ
2jβ + 1

4π

(
Rβ
r

)2

,

τq(r) =
∑
nβjβlβ

wβ
2jβ + 1

4π

[(
∂r
Rβ
r

)2

+
l(l + 1)
r2

(
Rβ
r

)2]
,

(24)

∇Jq(r) =

(
∂r +

2
r

)
Jq(r),

Jq(r) =
∑
nβjβlβ

wβ
2jβ + 1

4π

[
jβ(jβ + 1)− lβ(lβ + 1)− 3

4

]
2
r

(
Rβ
r

)2

.
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Table 7
Parameters of the SkM* Skyrme force.

t0 (MeV fm3) t1 (MeV fm5) t2 (MeV fm5) t3 (MeV fm6) t4 (MeV fm5)
−2645.0 410.0 −135.0 15595.0 130

x0 x1 x2 x3 α

0.09 0.0 0.0 0.0 1/6

Once defined the Skyrme potential, the Hartree–Fock equations are obtained by
imposing the total energy E to be stationary with respect to the individual variations of
the single-particle states, under the constraint that the wavefunctions be orthonormal.
The Hartree–Fock equations for the radial wavefunctions Rβ are

hβRβ = εβRβ (25)

with the mean-field Hamiltonian

hq = ∂rBq∂r + Uq + Uls,ql · σ, (26)

where

Bq =
~2

2m
+

1
8

[
t1

(
1+

1
2
x1

)
+t2

(
1+

1
2
x2

)]
ρ−1

8

[
t1

(
1
2

+x1

)
−t2
(

1
2

+x2

)]
ρq, (27)

Uq = t0

(
1 +

1
2
x0

)
ρ− t0

(
1
2

+ x0

)
ρq +

1
12
t3ρ

α

[
(2 + α)

(
1 +

1
2
x3

)
ρ

− 2

(
1
2

+ x3

)
ρq − α

(
1
2

+ x3

)
ρ2

pr + ρ2
ne

ρ

]
+

1
4

[
t1

(
1 +

1
2
x1

)
+ t2

(
1 +

1
2
x2

)]
τ − 1

4

[
t1

(
1
2

+ x1

)
− t2

(
1
2

+ x2

)]
τq

− 1
8

[
3t1

(
1 +

1
2
x1

)
− t2

(
1 +

1
2
x2

)]
∆ρ

+
1
8

[
3t1

(
1
2

+ x1

)
+ t2

(
1
2

+ x2

)]
∆ρq −

1
2
t4(∇J +∇Jq) + UCoul, (28)

Uls,q =
1
4
t4(ρ+ ρq) +

1
8

(t1 − t2)Jq −
1
8

(x1t1 + x2t2)J , (29)

where UCoul is the Coulomb contribution.
The mean field localizes the nucleus and breaks translational invariance (and

therefore nuclear ground-state is not a state with total momentum zero) [33]. Projecting
a state with good total momentum zero out of the given mean-field state is made by
modifying the nucleon mass:

~2

2m
→ ~2

2m

(
1− 1

A

)
. (30)
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Hartree–Fock equations have been solved with the usual iteration procedure.
Four point self-consistency in energy has been accomplished using 15 iterations, and a
120-point radial grid has been used. Woods–Saxon potential [24] solutions constitute
trial wavefunctions (zero-order) to start the Hartree–Fock iteration. Throughout the
calculations proton and neutron masses have been considered equal.

Appendix B. Determination of the linear relationship between nuclear
self-similarity measures and the number of nucleons using an analytical
approach of the nuclear density function

The objective is to compute the self-similarity integral

ZAA =

∫ ∞
0

ρ2
A(r)4πr2 dr (31)

to determine a trend in order to explain the linear relationship between ZAA and the
number of nucleons A obtained earlier.

Intuitively, one can expect a linear relationship between both magnitudes because
of the shape of the nuclear density functions. Approximately, nuclear densities can be
considered as Fermi–Dirac distributions. It is easy to see that these functions are very
similar to their squared form, except that they decrease faster. Therefore, integral (31)
is essentially identical to the normalization integral, but in the presence of a numerical
factor.

We will derive the relationship in a more formal way. In order to do this, we will
use a simple analytical approach of the nuclear density functions: the Fermi–Dirac
distribution-like density [29,32] given by the equation

ρ(r) = ρ0
1

1 + e(r−c)/a , (32)

where the parameters are defined as

ρ0 =
3A

4πc3(1 + π2a2/c2)
, (33)

a = 0.54 fm, (34)

c =
(
0.978 + 0.0206A1/3)A1/3 fm. (35)

In the range of studied nuclei (A = 12–208) some additional approaches can be made:
ρ0 can be considered roughly constant (and with a mean value of 0.17 fm−3), and the
parameter c can be approximated to c = A1/3 fm making an error at most of 11%.
All these approximations simplify the calculation without introducing a considerable
error, and the resulting analytical density function remains a good enough model.
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Figure 15. Squared Fermi–Dirac function plot. Dashed line shows the step function.

Then, the integral one wants to solve is

ZAA = 4πρ2
0

∫ ∞
0

r2(1 + e(r−c)/a)−2
dr. (36)

A change of variable is performed to simplify the integral:
r

a
≡ x and

c

a
≡ ξ. (37)

Introducing this change into equation (37) yields

ZAA = 4πρ2
0a

3
∫ ∞

0

x2

(1 + ex−ξ)2 dx. (38)

This integral is hard to solve, so a study of the behaviour of the function along the
effective range of integration must be made in order to perform other simplifications.
For large values of ξ, the situation is primarily controlled by the factor (1 + ex−ξ)−2

(that we will call the squared Fermi–Dirac function), whose departure from its limiting
values, namely zero (as x → ∞) and almost unity (as x → 0), is significant only in
the neighborhood of the point x = ξ. The width of this “region of significance” is
much smaller than the total effective range of integration. Therefore, in the lowest
approximation, one may replace the actual curve by a step function [30]. This is shown
in figure 15.

Equation (38) then reduces to

ZAA ≈ 4πρ2
0a

3
∫ ξ

0
x2 dx = 4πρ2

0a
3 ξ

3

3
. (39)

Undoing the change of variable, and using the approximations c ≈ A1/3 and ρ0 ≈
0.17 fm−3, we obtain

ZAA = 4πρ2
0a

3 1
3

(
c

a

)3

=
4
3
πρ2

0c
3 =

4
3
πρ2

0

(
A1/3)3 ≈ 0.12A. (40)
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This result explains the linear relationship between nuclear SSM and the number
of nucleons obtained in section 3.1. The slope of the line also surprisingly agrees,
despite the approximations made.
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[5] E. Besalú, R. Carbó, J. Mestres and M. Solà, in: Topics in Current Chemistry, ed. K. Sen (Springer,

Berlin, 1995).
[6] R.L. Burden and J.D. Fayres, Análisis Numérico (Grupo Ed. Iberoamericana, 1985).
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[10] R. Carbó and B. Calabuig, in: Concepts and Applications of Molecular Similarity, eds. M.A. Johnson
and G.M. Maggiora (Wiley, New York, 1990) p. 147.
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